

#### University of Idaho

#### **College of Natural Resources**

#### **PAIRED PLOT DENSITY TRIALS: WESTERN LARCH-4YR RESULTS**

MARK KIMSEY **INTERMOUNTAIN FORESTRY COOPERATIVE** 

41<sup>ST</sup> ANNUAL TECHNICAL MEETING MARCH 23, 2021







#### Į. V.

#### PRESENTATION OVERVIEW

- For PPDM overview, revisit prior PP presentation
- Distribution of WL installations
- 4-Yr Results
- Outcomes and Products



### **IFC WL PPDM NETWORK** WL INSTALLATIONS ACROSS THE INLAND NORTHWEST





- 23 installations
  - 6Yr measurements (n=0)
  - 4Yr measurements (n=11)
  - 2Yr measurements (n=23)



## WL SITE DISTRIBUTION: SDI x SI





## WESTERN LARCH THINNING RESPONSE BY: INDIVIDUAL/CROP TREE – DBH/HT CROP TREE/STAND – VOLUME



#### FULL WL REGRESSION MODELS\* **TREE & STAND LEVEL** Individual/Crop Tree Growth – DIA and Height $DIA/HT_{annual} = \beta_0 + (\beta_1 \times SI10YR) + (\beta_2 \times SDI_{Pre-Trt}) + (\beta_3 \times SI10YR \times SDI_{Pre-Trt})$

Whole Stand/Crop Tree Stand Growth – Volume (cu ft)

\* All models fit using SAS 9.4 PROC GLM \*\*Post-treatment implies Yr0 baseline measurements



+  $(\beta_{4} \times DIA_{Post-Trt**}) + (\beta_{5} \times SDI_{Post-Trt}) + (\beta_{6} \times SDI_{Post-Trt} \times SDI_{Post-Trt})$ 

NetVOL<sub>annual</sub> = exp( $\beta_0$  + ( $\beta_1$  x SI10YR) + ( $\beta_2$  x SDI<sub>Pre-Trt</sub>) + ( $\beta_3$  x SI10YR x SDI<sub>Pre-Trt</sub>) +  $(\beta_{\Delta} \times QMD_{Post-Trt}) + (\beta_{5} \times SDI_{Post-Trt}) + (\beta_{6} \times SDI_{Post-Trt} \times SDI_{Post-Trt}))$ 

# WL RESPONSE MODEL STATISTICS

| Model                            | R <sup>2</sup> | RMSE  | F-Value | Pr>F     |
|----------------------------------|----------------|-------|---------|----------|
| Ind Tree – DIA (in)              | 0.81           | 0.05  | 23.8    | < 0.0001 |
| Ind Tree – HT (ft)               | 0.61           | 0.29  | 7.0     | < 0.0001 |
| Crop Tree – DIA                  | 0.63           | 0.06  | 9.65    | < 0.0001 |
| Crop Tree – HT                   | 0.41           | 0.33  | 3.2     | 0.0169   |
| Crop Tree Stand – NetVol (cu ft) | 0.75           | 0.28* | 13.3    | < 0.0001 |
| Whole Stand – NetVol             | 0.80           | 0.35* | 18.1    | < 0.0001 |

\* Not back transformed, values roughly equivalent to 25 cu ft/ac/yr



## **DBH RESPONSE SURFACE INDIVIDUAL VS CROP TREE – INITIAL LOW-DENSITY STAND**







NOTE: To convert SDI to BA, multiply by 0.5454



## **DBH RESPONSE SURFACE** INDIVIDUAL VS CROP TREE – INITIAL HIGH-DENSITY STAND







## HEIGHT RESPONSE SURFACE INDIVIDUAL VS CROP TREE – INITIAL LOW-DENSITY STAND







## HEIGHT RESPONSE SURFACE INDIVIDUAL VS CROP TREE – INITIAL HIGH-DENSITY STAND







#### **STAND VOLUME RESPONSE SURFACE** CROP TREE VS WHOLE STAND – INITIAL LOW-DENSITY STAND







#### **STAND VOLUME RESPONSE SURFACE** CROP TREE VS WHOLE STAND – INITIAL HIGH-DENSITY STAND











#### VALIDATING SDIMAX MODELS "DENSITY MANAGEMENT DIAGRAM"



HR9SM, near Samuels, ID



9



Corp Line, near Dworshak Reservoir, ID



## SUMMARY **BROAD OUTCOMES TO DATE**

- Similar DIA results as seen with PP:
- thinning intensity, not by site type
- interaction between initial stand density and site type
- SDI)



WL DIA growth increment response in initial low-density stands (<150 SDI) was driven primarily by

DIA growth increment in initial high-density stands (>150 SDI) was affected both by thinning intensity and by site type – average tree and crop tree response patterns were similar at higher thinning intensities; however, crop trees outperformed the average tree at higher post-treatment densities

Height growth increment was not greatly affected by thinning across site types; however, there was a strong

Unlike PP, WL did not see height suppression on "lower" productive sites at "higher" stand densities (>150)







## SUMMARY **BROAD OUTCOMES TO DATE**

- Site type did not express itself in volume response across low density stands (<150 SDI)
- As pre-treatment SDI exceeded 150 SDI, there was a very significant interaction with site type on volume response
- Crop tree volume response in initial high-density stands dominated stand response across low productivity site types and/or in aggressive thinning regimes
- Highly productive site types showed a greater capacity to carry more crop and non-crop tree volume than low-productivity sites
- IFC SDIMAX WL model is overall predicting relevant maximums, and tracking mortality in unthinned stands
  - Tracking to assess future over/under predictions













#### CONCLUDING **STATEMENTS** THE FUTURE OF PPDM

- Validate SDImax models
- Validate G&Y models
- Develop growth and mortality multipliers by site quality, stand density, and species composition
- Calibrate G&Y software packages for thinning response by site/species
- Develop silvicultural guidelines for targeting optimal timing window and thinning to maximize growth response on crop trees while minimizing mortality